

Design strategies using hybrid models for manufacturing and vulnerability of composite structures

CM3 Transport 2023 ECCOMAS Thematic conference

David DUMAS (David.dumas@cenaero.be)

The DIDEAROT Project

- Horizon Europe project
 - September 2022 August 2026
 - CINEA agency support
- TRL 2-4 levels
 - Possible outcomes at TRL6 for direct Clean Aviation exploitation

The framework for building the project

HORIZON-CL5-2021-D5-01-06

- The challenges addressed in the call
 - Next generation digital aircraft transformation in design, manufacturing, integration and maintenance
 - real digital transformation with a holistic and circular* approach for the aviation ecosystem
 - Accelerate processes as well as allow flawless entry into service of new aircrafts and systems

Project Partners

- Expertise & expectations
 - Design challenges in long fibre reinforced polymer composites in aerospace
 - Complex multi-scale effects
 - Manufacturing
 - Non-linear behavior
 - HPC deployment & efficiency of algorithms
 - Integration in industrial design framework

Drawing out the blueprint

- Challenges of industrial design through simulation
 - Handle design changes, new materials or extreme loading conditions that need to be addressed for certification
 - Hybrid physical & data driven approaches to build efficient DoE requiring less testing
 - Exploit high fidelity local models capable of predicting complex phenomenon
 - Use physical models in the real-time process & monitoring applications
 - Exploit many-core processors (CPU) & stream processors (GPU) in structural & manufacturing problems

Drawing out the blueprint

- Challenges of physics through simulation
 - Process simulation
 - Handle coupled fluid-thermal-structural problems through HPC with enhanced performance
 - Account for complex interaction mechanisms (possibly enrich simulations with experimental results) up to high scales

- Streamline model parameter identification through hybrid methods to bridge the gap between scales
- Efficiently extend multi-scale methods to non-linear response
- Taking account variability in prediction of response at different scales

Simulation enhanced validation over scales

Approach in building a hybrid testing pyramid

Combining material-process & geometric effects in process simulation

- Efficient transition of process simulation over scales
 - Take advantage of data on existing experimental campaigns
 - Be representative of a final aerostructure through PoC building blocks
 - Layup configurations (monolithic sandwich multi-material)
 - Stiffener configurations & Curvature configurations (single double discrete ...)

Build prediction on application through segmentation

Hybrid models applied to process simulation

- At meso-scale
 - Evolution of cure response different rates
 - Change in volume fraction of fibers
 - Enhanced with DCS and coupon tests
- At macro-scale (feature)

At macro-scale (structure)

Machine learning applied to process simulation

• At meso-scale

- Layup effects & geometrical
- Detailed process effects
- Enhanced with spring in measurements & distortions

Machine learning applied to process simulation

At meso-scale

At macro-scale (feature)

- At macro-scale (structure)
 - Curing temperature distribution models
 - Full distortion predictions first on simplified feature based model that can be validated on full FEM

Machine learning applied to process simulation

• At meso-scale

At macro-scale (feature)

At macro-scale (structure)

- Ongoing critical steps
 - -> Gathering of experimental data for different parts
 - -> Generate simulation data at feature levels
 - -> Select & Test machine learning approaches for validation

Machine learning applied to vulnerability

- At micro-scale
 - Data generation of 3D Elasto-plastic composite RVE with damage mechanism
 - Also done at interfaces for Gc
 - Training done on a Recurrent Neural Network

At meso-scale

At macro-scale

Machine learning applied to vulnerability

At micro-scale

- At meso-scale
 - Build simulation models at the coupon level
 - Speed up using RNN material models
 - Possible training on prediction of allowables for macro-scale simulations
- At macro-scale

Machine learning applied to vulnerability

At micro-scale

At meso-scale

At macro-scale

Testing through vulnerability

Tests performed at different levels

 Tackle bottleneck of computational time building response under uncertainty using trained hybrid models

Clustering initiative

- Covering HE-2021-CL5-D5-01-06 projects
 - CAELESTIS: Hyperconnected simulation ecosystem supporting probabilistic design and predictive manufacturing of next generation aircraft structures (coordinator: AIMEN)
 - **DIDEAROT**: Digital Design strategies to certify and mAnufacture Robust cOmposite sTructures (coordinator: CENAERO)
 - NEXTAIR: multi-disciplinary digital enablers for NEXT-generation AIRcraft design and operations (coordinator: ONERA)
 - **GENEX**: New end-to-end digital framework for optimized manufacturing and maintenance of next generation aircraft composite structures (coordinator: ITA Innova)
 - INFINITE: Aerospace Composites digitally sensorised from manufacturing to end-of-life (coordinator: IDEKO, more especifically my colleagues Peio/Arkaitz, in CC)

> 50 different partners involved in the call

Conclusions

- DIDEAROT project will be carried out until end of 2026
- As project is in early stages of progress
 - Many open technical & strategical questions
 - need of convergence on gathering and sharing of data
 - Building blocks being built and interactions growing between partners
- News on activities
 - Internet site: www.didearot-project.eu
 - Looking forward to new more technical conference presentations & papers...

